Causal Inference for Beginners 02 Causal Graph Representation of Causality

Jiahao Zhu

Mars, International School of Business & Finance, Sun Yat-sen University

2023-09-26

1.0	h 2 0	/ hu
a	LIAU.	

< (17) > < (17) > <

Outline

Structural Causal Model (SCM)

Markov property of causal graph

э

→ ∃ →

< /□ > < Ξ

Review

- Correlation is not causality
- Causality is about intervention

Minimal external intervention

Review

- Does causality always mean correlation?
- EXP. Two genes (A and B) simultaneously influence cancer
 - $A = \{0, 1\}$ induces cancer
 - ▶ B = {0, 1} stops cancer
 - either A and B are expressed at the same time or not $(r_{A,B} = 1)$

Review

- Does causality always mean correlation?
- EXP. Two genes (A and B) simultaneously influence cancer
 - $A = \{0, 1\}$ induces cancer
 - $B = \{0, 1\}$ stops cancer
 - either A and B are expressed at the same time or not $(r_{A,B} = 1)$

• Even though A is the cause of cancer, there is no correlation $(r_{A,Cancer} = 0)$

Jiahao Zhu

Introduction of Graph

- Causal graph model
 - using graph model to represent causal relationships
- Graph G = (V, E)
 - ▶ vertex (节点)
 - ▶ edge (边)
- Adjacent (邻接)
 - two nodes are connected by an edge
- Path (路径) between node X and Y
 - a sequence of nodes beginning with X and ending with Y
- Directed and undirected graph

Jiahao Zhu

Introduction of Graph

- Parent (父节点) and ancestor (祖先)
 - parent: the beginning node of a directed edge
 (a) (D) (D) (D) (D)

 $(parent(D) = \{B, C\})$

- ancestor: the beginning node of a directed path (ancestor(D) = {A, B, C})
- Child (子节点) and descendent (后代)
 - child: the ending node of a directed edge
 (*child*(A) = {B, C})
 - descendent: the ending node of a directed path (descendent(D) = {B, C, D})

Introduction of Graph

- Cycle (环)
 - a directed path beginning and ending with the same node

• Directed acyclic graph (DAG, 有向无环图)

- we focus on this type of graph
- causal inference with directed cyclic graph (DCG) is still developing

• Structural Causal model (SCM)

z

- describe causal relationships in a mathematical way
- Type of causal relation (:=)
 - direct cause:

$$Y := f(X)$$

indirect cause:

$$Y := f(X)$$
$$X := g(Z)$$
$$Y := f(g(Z))$$

	4	日本《國本《兩本《兩本》	୬୯୯
Jiahao Zhu	Causal Graph	2023-09-26	8/15

- Components of SCM
 - ▶ endogenous variables (内生变量, V): variables that we focus on
 - exogenous variables (外生变量, U): variables we don't know or do not matter (approximately random)
 - ▶ functions (F): mathematical functions describing causal relations
- EXP. Education and income
 - education (*Edu*) is determined by intelligence (*Int*, random variable) and other random factors (*U_{Edu}*)

$$Edu = f_1(Int) + U_{Edu},$$

$$Int = U_{Int}$$

 income (*Inc*) is determined by education, intelligence, and other random factors (*U_{Inc}*)

$$Inc = f_2(Edu, Int) + U_{Inc}$$

- EXP. Education and income
 - in a graph way

Jiahao Zhu

- The relation between SCM and Causal Graph
 - each SCM represents a causal graph, and a causal graph may represent various SCMs

The relation between SCM and Causal Graph

Markov property of causal graph

- Anti-factual thinking (反事实, another definition of causality)
 - how does education influence people's income?
 - two parallel worlds (A and B) and two Jack living in these worlds (*Jack_A* and *Jack_B*)
 - ★ Jack_A finishes high school and goes to work
 - ★ Jack_B finishes high school and continues to go to university
 - ► the difference between incomes of Jack_A and Jack_B in their 30th birthday should be a clear effect of education

Markov property of causal graph

- Markov property of causal graph
 - Markov property (memory-less): the value of a variable in time t + 1 is only determined by its value in time t (e.g., Brownian motion)
 - given parent(Y), Y is independent of other non-descendants (or random)
 - in Jack's example, whether Jack goes to university or not is random
 - ★ Jack_A and Jack_B are totally the same when finishing high school
 - \star in other words, Jack are given factors like family and intelligence
 - * Jack_A flips a coin to go to work, Jack_B flips a coin to go to university
- Rule of product decomposition (乘积分解法则)

$$P(X_1, X_2, ..., X_n) = \prod P(X_i \mid parent(X_i))$$

Conclusion

some basic concepts of graph

- vertex and edge
- adjacent
- path
- directed graph
- parent and ancestor, child and descendent
- cycle
- DAG
- SCM and its relation with graph
- Markov property of graph and how it makes things simple

Thx for listening!

Q & A

	_	
<u>a h a</u>	<u> </u>	/ h
 anna	0 /	

æ

<ロト <問ト < 国ト < 国ト