Causal Inference for Beginners 00 A Bigger Picture Be a God with Scientific Theory

Jiahao Zhu

Mars, International School of Business & Finance, Sun Yat-sen University

2023-09-12

1.0	h 20	/ h
5.4		

< (17) > < (17) > <

Preface

《因果推断:基于图模型分析》罗锐

《因果推断》斯科特·坎宁安

(日)

э

Outline

- 2 What is theory?
- 3 the Productive Explanation framework
- A fictitious case

< ∃⇒

< A >

Warm-up Playing the God

And God said, Let there be light: and there was light.

And the authors said, Let there be effects: and there were effects.

What is theory?

- Scientific theory (Lewin, 1943)
 - Understanding
 - Predicting
 - Controlling
- Example: Newton's law of gravitation
 - Understanding: $F = \frac{G \times m_1 \times m_2}{r^2}$
 - Predicting: the discovery of Neptune (海王星)
 - Controlling: gravitational slingshot (引力弹弓)

- 4 目 ト - 4 日 ト

Scientific Theory

Theory is to explain

Figure 1 *Explanation as Production.*

If the world were as theory T says it is, phenomenon P would follow as a matter of course. (Pierce, 1931)

(日)

Some components

- Observations
 - unstructured recordings of sensory information
 - e.g., choices in the MBTI test
- Structured data
 - structured recordings of observations
 - encoding/measurement
 - e.g., MBTI scores

(日)

Figure 2 The Productive Explanation Model.

Some components

- Phenomenon
 - general patterns that need to be explained
 - e.g., "people with certain MBTI scores are more likely to smoke."
- Statistical pattern
 - general and mathematical relations or patterns in (most) data
 - statistical inference/model
 - e.g., significant correlations between MBTI scores and smoking

Figure 2 The Productive Explanation Model.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Scientific Theory

Some components

- Verbal theory
 - assumptions about the world to explain a phenomenon
 - ★ entities
 - ★ dimensions
 - ★ structures
 - relations (dynamical and causal)
- Formal model
 - precise statements of components and relations
 - e.g., utility function, demand/supply function

Figure 2 *The Productive Explanation Model.*

イロト イボト イヨト イヨト

Explanation chain

- Step 1: Represent phenomenon as a statistical pattern (or reversely)
- Step 2: Explicate the verbal theory as a formal model
- Step 3: Evaluate whether the formal model produces the statistical pattern

4 AR & 4 E & 4 E &

the social influence explanation of smoking

- Phenomenon: introvert people are less likely to smoke
- Statistical pattern: significant negative correlation coefficients between the introversion score and smoking behavior (e.g., r = -0.1, p < .05)
 - stable between measurements (e.g., MBTI, Big Five)
 - stable between samples (e.g., country, age, gender)
 - stable between times (e.g., 10-year longitudinal study)

the social influence explanation of smoking

• Verbal theory: the social influence hypothesis of smoking

- smoking is a social behavior
- introvert people have smaller social networks
- introvert people are less likely to interact with others
- therefore, introvert people are less likely to smoke

the social influence explanation of smoking

• Formal model: the social influence model of smoking

the introversion score (intro) of a person

intro
$$\sim N(50, 15^2)$$
, intro $\in [0, 100]$

network size

$$N = \theta_1 \times (100 - intro)(\text{set } \theta_1 = 0.1)$$

fixed smoking probability of others

$$P_{smoke,others} = \theta_2(\text{set } \theta_2 = 0.2)$$

probability to smoke

$$P_{smoke,individual} = rac{intro}{100} imes rac{N_{smoke}}{N}$$

イロト 不得 トイヨト イヨト

simulation codes

Simulate introversion scores intro_scores <- rnorm(num_individuals, mean=50, sd=15) intro_scores <- pmin(pmax(intro_scores, 0), 100) # (lipping values to be in [0, 100]</p>

Calculate network sizes network_sizes <- 100 * theta1_new - theta1_new * intro_scores network_sizes_rounded <- round(network_sizes)</p>

For each individual's social circle, determine the number of smokers num_smokers_in_network <- rbinom(num_individuals, size=pmax(0, network_sizes_rounded), prob=theta2_new)</p>

Calculate the probability of each individual smoking
P_individual_smokes <- theta3_new * (num_smokers_in_network / (network_sizes_rounded + 1e-10)) # added a small constant to avoid division by zer</pre>

Determine if the individual smokes based on the calculated probabilit individual_smokes <- runif(num_individuals) < P_individual_smokes individual_smokes_int <- as.integer(individual_smokes)</p>

Calculate the correlation coefficient between smoking behavior and introversion scores for this simulation correlation_coefficient <- cor(individual_smokes_int, intro_scores)</pre>

Store the correlation coefficient
correlation_coefficients[i] <- correlation_coefficient</pre>

simulation codes in R

		_
1.0	h 20	/ h.u
JId	II au	ZIIU

3

summary statistics

Jiahao Zhu

Scientific Theory

results

 $r_{intro,smoke} = -0.0182, p = .0687$

			_	
	h -	\sim		
G		υ.		

イロト イヨト イヨト イヨト

3

big sample is not everything, multiple sample is

Phenomenon is all about stability!

-	_	
hac	. /	
II au		
	hac	hao Zl

イロト イポト イヨト イヨト

the social influence explanation of smoking

Problems

- the choice of functions and parameters
- others' introversion scores
- network structure (e.g., random network)
- mutual influence of smoking
- ▶ ...
- Advantages of formal model
 - simple model makes big differences
 - clear assumptions
 - clear validations
 - clear future directions
 - Þ ...

Conclusion

- What is scientific theory?
 - playing God!
- Productive explanation framework
- Simple but illustrative case

∃ →

< (T) >

References

- Borsboom, D., van der Maas, H. L., Dalege, J., Kievit, R. A., & Haig, B. D. (2021). Theory construction methodology: A practical framework for building theories in psychology. *Perspectives on Psychological Science*, 16(4), 756-766.
- van Dongen, N., van Bork, R., Finnemann, A., van der Maas, H., Robinaugh, D., Haslbeck, J., ... & Borsboom, D. (2022). Productive Explanation: A Framework for Evaluating Explanations in Psychological Science. *PsyArXiv*.

Thanks for listening

Q&A

			_	
1.0	b b	\sim		b
	1.4	υ.		

イロト イヨト イヨト イヨト

æ